3.30 \(\int \frac {1}{(c \sin (a+b x))^{3/2}} \, dx\)

Optimal. Leaf size=73 \[ -\frac {2 E\left (\left .\frac {1}{2} \left (a+b x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {c \sin (a+b x)}}{b c^2 \sqrt {\sin (a+b x)}}-\frac {2 \cos (a+b x)}{b c \sqrt {c \sin (a+b x)}} \]

[Out]

-2*cos(b*x+a)/b/c/(c*sin(b*x+a))^(1/2)+2*(sin(1/2*a+1/4*Pi+1/2*b*x)^2)^(1/2)/sin(1/2*a+1/4*Pi+1/2*b*x)*Ellipti
cE(cos(1/2*a+1/4*Pi+1/2*b*x),2^(1/2))*(c*sin(b*x+a))^(1/2)/b/c^2/sin(b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 73, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {2636, 2640, 2639} \[ -\frac {2 E\left (\left .\frac {1}{2} \left (a+b x-\frac {\pi }{2}\right )\right |2\right ) \sqrt {c \sin (a+b x)}}{b c^2 \sqrt {\sin (a+b x)}}-\frac {2 \cos (a+b x)}{b c \sqrt {c \sin (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Int[(c*Sin[a + b*x])^(-3/2),x]

[Out]

(-2*Cos[a + b*x])/(b*c*Sqrt[c*Sin[a + b*x]]) - (2*EllipticE[(a - Pi/2 + b*x)/2, 2]*Sqrt[c*Sin[a + b*x]])/(b*c^
2*Sqrt[Sin[a + b*x]])

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2640

Int[Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[b*Sin[c + d*x]]/Sqrt[Sin[c + d*x]], Int[Sqrt[Si
n[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rubi steps

\begin {align*} \int \frac {1}{(c \sin (a+b x))^{3/2}} \, dx &=-\frac {2 \cos (a+b x)}{b c \sqrt {c \sin (a+b x)}}-\frac {\int \sqrt {c \sin (a+b x)} \, dx}{c^2}\\ &=-\frac {2 \cos (a+b x)}{b c \sqrt {c \sin (a+b x)}}-\frac {\sqrt {c \sin (a+b x)} \int \sqrt {\sin (a+b x)} \, dx}{c^2 \sqrt {\sin (a+b x)}}\\ &=-\frac {2 \cos (a+b x)}{b c \sqrt {c \sin (a+b x)}}-\frac {2 E\left (\left .\frac {1}{2} \left (a-\frac {\pi }{2}+b x\right )\right |2\right ) \sqrt {c \sin (a+b x)}}{b c^2 \sqrt {\sin (a+b x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 54, normalized size = 0.74 \[ -\frac {2 \left (\cos (a+b x)-\sqrt {\sin (a+b x)} E\left (\left .\frac {1}{4} (-2 a-2 b x+\pi )\right |2\right )\right )}{b c \sqrt {c \sin (a+b x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(c*Sin[a + b*x])^(-3/2),x]

[Out]

(-2*(Cos[a + b*x] - EllipticE[(-2*a + Pi - 2*b*x)/4, 2]*Sqrt[Sin[a + b*x]]))/(b*c*Sqrt[c*Sin[a + b*x]])

________________________________________________________________________________________

fricas [F]  time = 0.43, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {c \sin \left (b x + a\right )}}{c^{2} \cos \left (b x + a\right )^{2} - c^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*sin(b*x+a))^(3/2),x, algorithm="fricas")

[Out]

integral(-sqrt(c*sin(b*x + a))/(c^2*cos(b*x + a)^2 - c^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (c \sin \left (b x + a\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*sin(b*x+a))^(3/2),x, algorithm="giac")

[Out]

integrate((c*sin(b*x + a))^(-3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.06, size = 141, normalized size = 1.93 \[ \frac {2 \sqrt {-\sin \left (b x +a \right )+1}\, \sqrt {2 \sin \left (b x +a \right )+2}\, \left (\sqrt {\sin }\left (b x +a \right )\right ) \EllipticE \left (\sqrt {-\sin \left (b x +a \right )+1}, \frac {\sqrt {2}}{2}\right )-\sqrt {-\sin \left (b x +a \right )+1}\, \sqrt {2 \sin \left (b x +a \right )+2}\, \left (\sqrt {\sin }\left (b x +a \right )\right ) \EllipticF \left (\sqrt {-\sin \left (b x +a \right )+1}, \frac {\sqrt {2}}{2}\right )-2 \left (\cos ^{2}\left (b x +a \right )\right )}{c \cos \left (b x +a \right ) \sqrt {c \sin \left (b x +a \right )}\, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*sin(b*x+a))^(3/2),x)

[Out]

1/c*(2*(-sin(b*x+a)+1)^(1/2)*(2*sin(b*x+a)+2)^(1/2)*sin(b*x+a)^(1/2)*EllipticE((-sin(b*x+a)+1)^(1/2),1/2*2^(1/
2))-(-sin(b*x+a)+1)^(1/2)*(2*sin(b*x+a)+2)^(1/2)*sin(b*x+a)^(1/2)*EllipticF((-sin(b*x+a)+1)^(1/2),1/2*2^(1/2))
-2*cos(b*x+a)^2)/cos(b*x+a)/(c*sin(b*x+a))^(1/2)/b

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (c \sin \left (b x + a\right )\right )^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*sin(b*x+a))^(3/2),x, algorithm="maxima")

[Out]

integrate((c*sin(b*x + a))^(-3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {1}{{\left (c\,\sin \left (a+b\,x\right )\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(c*sin(a + b*x))^(3/2),x)

[Out]

int(1/(c*sin(a + b*x))^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {1}{\left (c \sin {\left (a + b x \right )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(c*sin(b*x+a))**(3/2),x)

[Out]

Integral((c*sin(a + b*x))**(-3/2), x)

________________________________________________________________________________________